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Density Functional Theory proposes methods to calculate, or approximate, the
one-particle density of an N -particle quantum system directly – without first cal-
culating the full N -body wave-function. Such methods are popular computational
tools, due to their moderate cost. This leads to the question how much informa-
tion about the full system is contained in the one-body density. More specifically,
one may ask which quantities in the full system may be reconstructed from the
density, given some a priori information, such as what kind of particles constitute
the system. We will address this question here for a time-dependent problem.

We assume that the quantum system in question consists of N fermions or
bosons, and that its time-dependent Hamiltonian, defined on L2

a(RdN ) or L2
s (RdN ),

is of the form

HV (t) := H0 +

N∑
i=1

V (xi, t) ,

with

H0 =

N∑
i=1

−∆xi
+ V0(xi) +

∑
1≤i<j≤N

W (xi − xj) .

The conditions on the potentials V , V0, W on Rd will be discussed in detail later.
We consider V0 and W as quantities which are a priori known. If, for example,
the particles in our system are electrons they will interact via Coulomb forces
W (x) = 1/|x|.

In the time-independent case of ground-states, it is known that for V, V0,W ∈
Ld/2(Rd) + L∞(Rd) (for d ≥ 3) the potential V is uniquely determined by the
ground state density

ρ(x) = N

∫
|ψ(x, y1, . . . , yN−1)|2 dy1 · · · dyN−1 .

That is, if V1, V2 ∈ Ld/2(Rd) + L∞(Rd) differ by more than a constant and have
ground states ψ1, ψ2, then the corresponding one-particle densities ρ1 and ρ2 are
different. Equivalently, if ρ1 = ρ2, then V1 = V2 +const.. This statement is known
as the Hohenberg-Kohn Theorem [HK64], see Lieb [Li83] for a proof.

Runge and Gross [RG84] have argued that a similar property should hold for
time dependent systems. That is, the time-dependent density ρ(x, t) should deter-
mine the external potential V (x, t) up to a constant C(t) if the system starts with
a given initial wave-function ψ0. The argument is based on an order-by order anal-
ysis of the Taylor series in time of the density ρ(x, t) obtained from the solution
ψ(t) of the Schrödinger equation with initial condition ψ0 and time-dependent
Hamiltonian HV . Such an expansion clearly relies on smoothness of ρ and V
w.r.t. the time-variable, which cannot always be guaranteed. This has recently led
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to a discussion in the physical-chemistry literature regarding the validity of the
argument, see e.g. [YB13].

The first mathematical work concerning this question is our article [FLLS16],
where we discuss the possibility of choosing a set I of admissible initial conditions
and V of external potentials for which the statement above can be proven rigor-
ously, using an argument similar to that of Runge and Gross. In order to avoid
pathologies, these sets should satisfy the following conditions:

• The set I is invariant under the dynamics generated by HV for any V ∈ V.
• 0 ∈ V and if V (x, t), t ∈ [0, T ) is an admissible potential, then so is the

time-independent potential V (x, t0) for any t0 ∈ [0, T ).
• If the time-independent potential V (x) ∈ V, then any eigenvectors of HV

are admissible initial conditions.

In order to have smooth solutions, we also need to restrict the set of initial condi-
tions

I ⊂
⋂

V (x)∈V

C∞(HV ) ,

where the intersection is over all time-independent potentials and C∞(HV ) :=⋂
k∈ND(Hk

V ) denotes the set of HV -smooth vectors. Now, depending on the set
V, the intersection above may be very small – and will in general not be invariant
under the dynamics of the operators HV . In order to avoid this we have to restrict
V so that

(1) C∞(HV ) = C∞(H0)

for every V ∈ V. This condition clearly shows that the possible choice of V depends
strongly on H0 – and thus on V0 and W .

1. Smooth potentials

If the potentials V0 and W are smooth, we have natural choices for I and V
and the Runge-Gross argument becomes a rigorous theorem. To be more precise,
let V0,W ∈ C∞b (Rd,R), W even, and set

I =
⋂
k∈N

H2k(RdN ) ∩ L2
a/s(R

dN )

V = C∞b ([0, T )× Rd,R)

for some T > 0. We then have:

Theorem 1. Let V1, V2 ∈ V and ψ0 ∈ I with one-particle density ρ0. Denote
by ψk(t), k ∈ 1, 2 the solution at time t ∈ [0, T ) of the Schrödinger equation with
Hamiltonian HVk

and initial condition ψk(0) = ψ0. Denote by ρk the correspond-
ing one-particle density. If ρ1 = ρ2, then for all ` ∈ N

(2)

∫
Rd

ρ0(x)|∇∂`t (V1 − V2)|2(x, 0)dx = 0 .
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If additionally the set ρ−10 (0) has zero Lebesgue measure, then ∂`tV1(x) = ∂`tV2(x)+
c` for some constant c`. If furthermore (V1 − V2) (x, t) is real-analytic in t for every
x we also have V1(x, t) = V2(x, t) + C(t), with C(t) =

∑
`∈N

c`
`! t

`.

For the proof of this theorem, one first applies a result of Kato [Ka53] to show
that ψk(t) ∈ I depends smoothly on time. Then Equation (2) is obtained recur-
sively by calculating weak time-derivatives of ρ1 − ρ2 at t = 0, which must equal
zero since ρ1 = ρ2. For instance, the weak second derivative yields

0 =
d2

dt2

∣∣∣∣
t=0

∫
Rd

ϕ(x)(ρ1 − ρ2)(x, t)dx = 2N

∫
(∇ϕ)(x)∇(V2 − V1)(x, 0)dx ,

so choosing the test-function ϕ = V2 − V1 gives (2) for ` = 0. The additional
statements follow easily from (2).

2. Singular potentials

If V0 or W are not smooth, the condition (1) will lead to strong restrictions
on the set V. For example, it is easy to see that if H0 is the one-dimensional
Schrödinger operator with a delta-potential at x = 0, any potential satisfying (1)
must be smooth on R and vanish to infinite order at x = 0. We expect this
statement to hold generically for non-smooth potentials V0. The restrictions on V
are far more severe for singular interactions. We have the following:

Proposition 1. Let d = 3, N = 2, V0 = 0, W (x) = 1
|x| be the Coulomb-interaction

and H0 the operator acting on symmetric functions given by these choices. If
V ∈ C6

b (R3) satisfies D(H4
V ) = D(H4

0 ) then V is constant.

To prove this, one separates the relative and centre-of-mass coordinates and
then applies similar arguments as in the case of a singular one-body potential V0.
This yields ∆V = 0 and thus proves that V is constant.

We thus see that for the Coulomb-interaction Equation (1) already implies that
V is constant, and there is nothing of interest to prove afterwards. Equation (2) can
still be shown to hold for ` ≤ 3 (` ≤ 4 for fermions), under reasonable assumptions.
In order to obtain more information, a new approach that avoids Taylor expansions
of high order is clearly necessary.
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