Devoir Maison

Exercice 1. Soit E un espace vectoriel sur \mathbb{R} . Le but de cet exercice est de montrer le théorème suivant concernant le prolongement d'une forme linéaire définie sur un sous-espace vectoriel (sev) de E en une forme linéaire définie sur E tout entier.

Théorème 1 (Hahn-Banach) Soit $p: E \to \mathbb{R}$ une application vérifiant pour tout $x, y \in E$ et pour tout $\lambda \in \mathbb{R}_+^*$

$$p(\lambda x) = \lambda p(x)$$
 et $p(x+y) \le p(x) + p(y)$.

Soit $G \subset E$ un sous-espace vectoriel et soit $g: G \to \mathbb{R}$ une application linéaire telle que pour tout $x \in G$

$$g(x) \le p(x)$$
.

Alors il existe une forme linéaire f définie sur E qui prolonge g, c'est-à-dire g(x)=f(x) pour tout $x\in G$, et telle que pour tout $x\in E$

$$f(x) \le p(x)$$
.

Soit

 $P = \{h : \mathcal{D}(h) \subset E \to \mathbb{R} \mid \mathcal{D}(h) \text{ sev de E}, h \text{ linéaire}, G \subset \mathcal{D}(h), h \text{ prolonge } g, h(x) \leq p(x) \ \forall x \in \mathcal{D}(h)\}$ muni de la relation d'ordre

$$h_1 \prec h_2 \Leftrightarrow \mathcal{D}(h_1) \subset \mathcal{D}(h_2)$$
 et h_2 prolonge h_1 .

- 1. Montrer que P est non vide.
- 2. Montrer que tout sous-ensemble totalement ordonné de P admet un majorant. En déduire que P admet un élément maximal noté f.
- 3. Montrer que $\mathcal{D}(f) = E$. Indication : on peut raisonner par l'absurde en supposant $\mathcal{D}(f) \neq E$ et en construisant une forme linéaire h qui contredit la maximalité de f.

Exercice 2. On considère c_0 , ℓ^1 et ℓ^{∞} les espaces de Banach des suites de nombres réels $x = (x_n)_{n \in \mathbb{N}^*}$ définis par

$$x \in \ell^1$$
 si et seulement si $||x||_1 = \sum_{n=1}^{+\infty} |x_n| < \infty$, $x \in \ell^{\infty}$ si et seulement si $||x||_{\infty} = \sup_{n \in \mathbb{N}^*} |x_n| < \infty$, $x \in c_0$ si et seulement si $x \in \ell^{\infty}$ et $\lim_{n \to +\infty} |x_n| = 0$.

1. Soit $y = (y_n)_{n \in \mathbb{N}^*} \in \ell^1$. Montrer que l'application $\Lambda_y : c_0 \to \mathbb{R}$ définie, pour tout $x \in c_0$, par

$$\Lambda_y x = \sum_{n=1}^{+\infty} x_n y_n \tag{1}$$

est une forme linéaire continue de norme $\|\Lambda_y\| = \|y\|_1$

- 2. Soit $f \in c_0^*$. On pose $y = (y_k)_{k \in \mathbb{N}^*}$, $y_k = f(e(k))$ avec $e(k) = (\delta_{ik})_{i \in \mathbb{N}^*}$.
 - (a) Montrer que $y \in \ell^1$.
 - (b) Montrer que, pour tout $x \in c_0$, $f(x) = \sum_{k=1}^{+\infty} x_k y_k$. Indication : on pourra utiliser que le sous-espace vectoriel engendré par les e(k) est dense dans c_0 .
 - (c) En déduire que c_0^* est isométriquement isomorphe à ℓ^1 .
- 3. Montrer qu'il existe $\Phi \in (\ell^{\infty})^*$, $\Phi \neq 0$ telle que $\Phi(x) = 0$ pour tout $x \in c_0$. En déduire que $(\ell^{\infty})^*$ n'est pas isométriquement isomorphe à ℓ^1 . Indication : sur l'espace vectoriel des suites convergentes, noté c, on peut définir une application linéaire continue par $\tilde{\Phi}(x) = \lim_{n \to +\infty} x_n$.