M. Conforti, A. Mussot, A. Kudlinski, S. Rota Nodari, G. Dujardin, S. De Bièvre, A. Armaroli, S. Trillo
Heteroclinic structure of parametric resonance in the nonlinear Schrödinger equation.
To appear in Phys. Rev. Lett. (arXiv)

S. Rota Nodari, M. Conforti, G. Dujardin, A. Kudlinski, A. Mussot, S. Trillo, S. De Bièvre
Modulation instability in dispersion-kicked optical fibers.
Phys. Rev. A 92, (2015), 013810, doi : 10.1103/PhysRevA.92.013810. (arXiv)

S. De Bièvre, F. Genoud, S. Rota Nodari
Orbital stability: analysis meets geometry.
In Nonlinear Optical and Atomic Systems, Lecture Notes in Mathematics 2146, (2015), pp. 147-273, doi :10.1007/978-3-319-19015-0. (arXiv)

M. Lewin, S. Rota Nodari
Uniqueness and non-degeneracy for a nuclear nonlinear Schrödinger equation.
Nonlinear Differ. Equ. Appl. (NoDEA) 22 (2015), pp. 673-698, doi:10.1007/s00030-014-0300-3. (arXiv)

S. Rota Nodari, S. Serfaty
Renormalized energy equidistribution and local charge balance in 2D Coulomb systems.
Int. Math. Res. Not. IMRN 11 (2015), pp. 3035-3093, doi: 10.1093/imrn/rnu031. (arXiv)

L. Le Treust, S. Rota Nodari
Symmetric Excited States for a Mean-Field Model for a Nucleon.
Journal of Differential Equations, vol. 255(10) (2013), pp. 3536-3563, doi: 10.1016/j.jde.2013.07.041. (arXiv)

M.J. Esteban, S. Rota Nodari
Ground States for a Stationary Mean-Field Model for a Nucleon.
Ann. Henri Poincaré, vol. 14(5) (2013), pp. 1287-1303, doi: 10.1007/s00023-012-0211-y. (arXiv)

M.J. Esteban, S. Rota Nodari
Symmetric ground states for a stationary relativistic mean-field model for nucleons in the nonrelativistic limit.
Rev. Math. Phys., Vol. 24(10) (2012), 1250025 (30 pages), doi: 10.1142/S0129055X12500250. (arXiv)

S. Rota Nodari
The relativistic mean-field equations of the atomic nucleus.
Rev. Math. Phys., vol. 24(4) (2012), 1250008 (41 pages), doi: 10.1142/S0129055X12500080. (arXiv)

S. Rota Nodari
Perturbation method for particle-like solutions of the Einstein–Dirac–Maxwell equations.
C. R. Acad. Sci. Paris, Ser. I 348 (2010), pp. 791-794, doi: 10.1016/j.crma.2010.06.003

S. Rota Nodari
Perturbation Method for Particle-like Solutions of the Einstein-Dirac equations.
Ann. Henri Poincaré, vol. 10 (7) (2010), pp. 1377–1393, doi: 10.1007/s00023-009-0015-x

Conference Proceedings

M. Conforti, S. Rota Nodari, G. Dujardin, A. Kudlinski, A. Mussot, S. Trillo, S. De Bièvre
Modulation instability in periodically dispersion kicked optical fibers.
To appear in Conference on Lasers and Electro-Optics - European Quantum Electronics Conference (CLEO/EUROPE - EQEC) (2015)


S. De Bièvre, S. Rota Nodari
Orbital stability via the energy-momentum method: the case of higher dimensional symmetry groups
Submitted. (arXiv)